Procedimiento para analizar una función

Ode navigation



Loading viewer.. Loading viewer..


Loading viewer.. Loading content..
399 Visits
Put it on your website

Put it on your website

intef

En esta unidad didáctica daremos los procedimientos o pautas para analizar funciones reales de variable real de la forma y=f(x). Expresión explícita de una variable y que depende de otra variable x. Partimos de la expresión dada y=f(x) y queremos obtener toda la información posible de la misma. Todos sabemos que en campos del conocimiento humano, como la Física, la Biología, la Economía, la Arquitectura, la Ingeniería etc., se utilizan funciones matemáticas para relacionar dos variables que intervienen en cierto fenómeno. Si somos capaces de analizar la función tendremos información acerca de dicho fenómeno. Haciendo una representación gráfica de los puntos (x,f(x)) podremos comunicar muy fácilmente el resultado del análisis y extrae conclusiones muy útiles para los problemas reales que dichas funciones modelizan: tendencia, extremos, continuidad, simetría, periodicidad, etc. El concepto de límite de funciones nos permitió llegar a la idea de función continua y función derivada y en este momento el alumnado ya tendrá experiencia en la utilización de estas herramientas para analizar funciones. El procedimiento para la obtención de asíntotas oblicuas o la determinación de las ramas infinitas supondrá una novedad para el estudiante. Conviene poner delante todas las herramientas necesarias para el análisis de funciones, bien entendido que rara vez emplearemos todas para analizar cierta función pero todas serán necesarias según el caso. Finalmente hay que destacar que el estudio de las gráficas de las funciones y en las curvas en general descubrimos, a veces con sorpresa, formas de gran belleza y armonía. El procedimiento para analizar una función y=f(x) consiste en aplicar las propiedades y características de las funciones y de sus derivadas que en síntesis son las siguientes: 1 Dominio y continuidad 5 Cortes y regiones 2 Periodicidad 6 Monotonía y extremos 3 Simetrías 7 Curvatura e inflexión 4 Asíntotas 8 Gráfica e imagen.

Knowledge area
Educational context
Collections
License type universal Licencia de Creative Commons
End user learner
Contributions
publisher INTEF 07/12/2024 publisher INTEF . 07/12/2024 publisher INTEF 07/12/2024 author Ángel Cabezudo Bueno 07/12/2024 publisher Instituto de Tecnologías Educativas (ITE) 07/12/2024 editor Instituto de Tecnologías Educativas (ITE) 07/12/2024 technical validator Ildefonso Fernández Trujillo 07/12/2024