ARTÍCULOS
-
Mínim Comú Múltiple i Màxim Comú Divisor
Mínim comú múltiple i màxim comú divisor 1. Descomposició de nombres Per a calcular el mínim comú múltiple o el màxim comú divisor de dos o més nombres cal descompondre aquests com un producte de potències de nombres primers. Exemple: Per descompondre un nombre dividim el nombre successivament entre nombres primers fins obtenir un 1. Més concretament: Dividim successivament per nombres primers (de manera que la divisió sigui exacta). La descomposició és el producte de les potències d...
Área de conocimientoContexto educativo- Educación Secundaria Obligatoria
- 12 - 13 años / Primer curso
- 13 - 14 años / Segundo curso
- 14 - 15 años / Tercer curso
- 15 - 16 / Cuarto curso
- Formación Profesional
- Formación Profesional Básica (más de 15 años)
- Ciclo formativo grado medio (más de 16 años)
- Ciclo formativo grado superior (más de 18 años)
- Educación de Personas Adultas
-
Equacions de segon grau (completes i incompletes)
Equacions de segon grau completes i incompletes Una equació de segon grau és una equació polinòmica de grau 2, és a dir, el major grau dels monomis és 2, o siga, x al quadrat. Com que l'equació és de grau 2, tindrà, com a molt, dues arrels (solucions) distintes. Tota equació de segon grau es pot escriure en la forma Si ningun dels coeficients, a,b i c és zero, és a dir, direm que l'equació és completa. Si no és així (si b ó c és 0), direm que és incompleta. 1. Equació completa Les...
Área de conocimiento -
Equacions exponencials i logarítmiques
Equacions exponencials i logarítmiques 1. Equacions exponencials Una equació exponencial és aquella en la que apareixen exponencials, és a dir, potències que tenen la incògnita, x, en els exponents. En aquesta pàgina resoldrem equacions exponencials sense emprar logaritmes. El mètode de resolució consisteix en aconseguir una igualtat entre dues exponencials amb la mateixa base per poder igualar els seus exponents. Aplicarem les propietats de les potències. Exemple 1: Si escrivim 27 com...
Área de conocimiento -
Teorema de Pitàgores (teorema i aplicació)
Teorema de Pitàgores Teorema i exemples d'aplicació. 1. Teorema de Pitàgores Donat un triangle rectangle amb catets a i b i hipotenusa h (el costat oposat a l'angle recte). Aleshores, Recordem que: el triangle és rectangle perquè té un angle recte, és a dir, un angle de 90 graus ó π / 2 radiants. la hipotenusa és el costat oposat a l'angle recte Problemes d'aplicació Problema 1 Calcular la hipotenusa del triangle rectangle de costats 3cm i 4cm. Solució: Els costats só...
Área de conocimientoContexto educativo- Educación Secundaria Obligatoria
- 12 - 13 años / Primer curso
- 13 - 14 años / Segundo curso
- 14 - 15 años / Tercer curso
- 15 - 16 / Cuarto curso
- Formación Profesional
- Formación Profesional Básica (más de 15 años)
- Ciclo formativo grado medio (más de 16 años)
- Ciclo formativo grado superior (más de 18 años)
- Educación de Personas Adultas