ARTIGOS
-
Polígonos I
Polígonos I Un polígono es una figura geométrica formada por segmentos rectos (llamados lados) unidos de forma que encierran un área en el plano. Ejemplos: polígonos de cinco lados (pentágonos) Estos polígonos se denominan pentágonos puesto que tienen cinco lados. Un polígono es regular cuando todos sus lados tienen la misma longitud y los ángulos (interiores) que forman los lados son iguales. Si no es así, el polígono es irregular. Ejemplo: polígonos regulares El nombre de un políg...
Área de coñecemento -
Equacions de segon grau (completes i incompletes)
Equacions de segon grau completes i incompletes Una equació de segon grau és una equació polinòmica de grau 2, és a dir, el major grau dels monomis és 2, o siga, x al quadrat. Com que l'equació és de grau 2, tindrà, com a molt, dues arrels (solucions) distintes. Tota equació de segon grau es pot escriure en la forma Si ningun dels coeficients, a,b i c és zero, és a dir, direm que l'equació és completa. Si no és així (si b ó c és 0), direm que és incompleta. 1. Equació completa Les...
Área de coñecemento -
Pythagorean Theorem
Pythagoren Theorem Pythagoras' Theorem: Given a right triangle with sides a and b and a hypotenuse h (the side opposite the right angle). Then, Remember that... triangle is a right-angled triangle because it has a right angle, an angle of 90º or π / 2 radians The hypotenuse is the opposite side as the right angle. Note: h is always bigger than the other sides, as shows h > a and h > b. The Pythagoras theorem is one of the most known results in mathematics and also one...
Área de coñecementoContexto educativo -
Mínim Comú Múltiple i Màxim Comú Divisor
Mínim comú múltiple i màxim comú divisor 1. Descomposició de nombres Per a calcular el mínim comú múltiple o el màxim comú divisor de dos o més nombres cal descompondre aquests com un producte de potències de nombres primers. Exemple: Per descompondre un nombre dividim el nombre successivament entre nombres primers fins obtenir un 1. Més concretament: Dividim successivament per nombres primers (de manera que la divisió sigui exacta). La descomposició és el producte de les potències d...
Área de coñecementoContexto educativo- Educación Secundaria Obligatoria
- 12 - 13 años / Primer curso
- 13 - 14 años / Segundo curso
- 14 - 15 años / Tercer curso
- 15 - 16 / Cuarto curso
- Formación Profesional
- Formación Profesional Básica (más de 15 años)
- Ciclo formativo grado medio (más de 16 años)
- Ciclo formativo grado superior (más de 18 años)
- Educación de Personas Adultas
-
Teorema de Pitàgores (teorema i aplicació)
Teorema de Pitàgores Teorema i exemples d'aplicació. 1. Teorema de Pitàgores Donat un triangle rectangle amb catets a i b i hipotenusa h (el costat oposat a l'angle recte). Aleshores, Recordem que: el triangle és rectangle perquè té un angle recte, és a dir, un angle de 90 graus ó π / 2 radiants. la hipotenusa és el costat oposat a l'angle recte Problemes d'aplicació Problema 1 Calcular la hipotenusa del triangle rectangle de costats 3cm i 4cm. Solució: Els costats só...
Área de coñecementoContexto educativo- Educación Secundaria Obligatoria
- 12 - 13 años / Primer curso
- 13 - 14 años / Segundo curso
- 14 - 15 años / Tercer curso
- 15 - 16 / Cuarto curso
- Formación Profesional
- Formación Profesional Básica (más de 15 años)
- Ciclo formativo grado medio (más de 16 años)
- Ciclo formativo grado superior (más de 18 años)
- Educación de Personas Adultas
-
Proporcionalidad y regla de tres
Proporcionalidad directa Dos magnitudes a y b son directamente proporcionales cuando existe una constante k tal que a/b = k La constante k se denomina constante de proporcionalidad o razón. Se dice que a y b mantienen una relación de proporcionalidad directa. En la proporcionalidad directa, cuando una de las magnitudes cambia, la otra también debe hacerlo de modo que su razón se mantenga constante. Ejemplo: En un movimiento con velocidad constante v, la distancia recorrida viene dada p...
Área de coñecemento