ARTICLES
-
Estudio de la continuidad, extremos, monotonía y curvatura de una función
Estudio de la continuidad, monotonía, existencia de extremos (máximos y mínimos) y curvatura (convexa o cóncava). (aplicaciones del cálculo diferencial) Estudio de la función: 1. Dominio, recorrido y continuidad: Como la función es una raíz cuadrada, el radicande debe ser mayor o igual que 0. Resolvemos la inecuación: La desigualdad siempre se cumple ya que la ecuación de segundo grado no tiene soluciones (reales) y, por tanto, la función no cambia de signo, manteniéndose siempre en...
Àrea de coneixement -
Dominio y Recorrido (de una función)
Dominio y recorrido de una función 1. Dominio y codominio Una función, f, es una ley entre dos conjuntos de números: el dominio y el codominio. A cada número del dominio le hace corresponder un único número del codominio. Esta ley es una correspondencia unívoca. Ejemplo: En el ejemplo, el dominio es el conjunto El codominio es el conjunto La expresión de la función es ya que lo que hace la función es multiplicar por dos cada número del dominio. Podemos observar cómo a cada ele...
Àrea de coneixement -
Derivada de una función elevada a otra
En este artículo vamos a obtener una fórmula para calcular la derivada de una función elevada a otra función, por ejemplo: 1. La fórmula Sea la función y(x) la que queremos derivar. Supongamos que es de la forma: Es decir, la función y(x) es la función f(x) elevada a la función g(x). Para facilitar la notación, escribimos y, f y g para referirnos a las funciones y(x), f(x) y g(x), respectivamente. Las derivadas de estas funciones las escribiremos como y', f' y g'. Por tanto, la funci...
Àrea de coneixement