ARTICLES
-
Exercicis Resolts de Matemàtiques
Exercicis Resolts de Matemàtiques Índex: Nombres: Mínim comú múltiple Màxim comú divisor Fraccions: Introducció a les fraccions Suma i resta de fraccions Multiplicació i divisió de fraccions Fracció generatriu de nombres decimals Fracció mixta o nombre mixt Potències: Calcular potències i simplificar expressions amb potències emprant les seves propietats Equacions de primer grau: Resoldre equacions Problems de plantejar equacio...
Àrea de coneixement -
Mínim Comú Múltiple i Màxim Comú Divisor
Mínim comú múltiple i màxim comú divisor 1. Descomposició de nombres Per a calcular el mínim comú múltiple o el màxim comú divisor de dos o més nombres cal descompondre aquests com un producte de potències de nombres primers. Exemple: Per descompondre un nombre dividim el nombre successivament entre nombres primers fins obtenir un 1. Més concretament: Dividim successivament per nombres primers (de manera que la divisió sigui exacta). La descomposició és el producte de les potències d...
Àrea de coneixementContext educatiu- Educación Secundaria Obligatoria
- 12 - 13 años / Primer curso
- 13 - 14 años / Segundo curso
- 14 - 15 años / Tercer curso
- 15 - 16 / Cuarto curso
- Formación Profesional
- Formación Profesional Básica (más de 15 años)
- Ciclo formativo grado medio (más de 16 años)
- Ciclo formativo grado superior (más de 18 años)
- Educación de Personas Adultas
-
Fraccions (concepte, operacions i exemples)
Fraccions Contingut:Introducció, Suma i resta de fraccions,Producte i divisió de fraccions,Fracció generatriu de nombres decimals,Fracció mixta (o nombre mixt) 1. Introducció Una fracció és una manera de representar la divisió de dos nombres. Es representa escrivint el dividend dalt d'una línia i el divisor baix d'aquesta. Exemple: fracció 3 partit 4 S'anomena numerador al nombre de dalt (en l'exemple, el 3) i denominador al nombre de baix (en l'exemple, el 4). La fracció de l'exempl...
Àrea de coneixement -
Resolució d'equacions de primer grau i de sistemes d'equacions
Equacions de primer grau y sistemes En les equacions de primer grau la part literal dels monomis no tenen exponent major que 1 (per exemple, 3x pot aparèixer a una equació de primer grau però, x al quadrat no perquè és un monomi de segon grau). Precisament aquest fet ens assegura que, en cas d'existir solució, només n'hi ha una (excepte el cas especial en què n'hi ha infinites). Consells a l'hora de resoldre una equació 1. Si arribem a una igualtat impossible, no hi ha solució. Per exemple...
Àrea de coneixement -
M02 - Instal·lacions elèctriques interiors IOC (Catalá)
Per al professorat de formació professional, a la IOC podem trobar diferents recursos de diferents famílies i cicles de formació professional: Família Cicle Informàtica CFGM Sistemes microinformàtics i xarxes CFGS Administració de sistemes informàtics en xarxa CFGS Desenvolupament d'aplicacions multiplataforma CFGS Desenvolupament d'aplicacions web Electricitat i electrònica CFGM Equips electrònics de consum (extingit) CFGM...
Àrea de coneixementContext educatiu -
Equacions de segon grau (completes i incompletes)
Equacions de segon grau completes i incompletes Una equació de segon grau és una equació polinòmica de grau 2, és a dir, el major grau dels monomis és 2, o siga, x al quadrat. Com que l'equació és de grau 2, tindrà, com a molt, dues arrels (solucions) distintes. Tota equació de segon grau es pot escriure en la forma Si ningun dels coeficients, a,b i c és zero, és a dir, direm que l'equació és completa. Si no és així (si b ó c és 0), direm que és incompleta. 1. Equació completa Les...
Àrea de coneixement -
Teorema de Pitàgores (teorema i aplicació)
Teorema de Pitàgores Teorema i exemples d'aplicació. 1. Teorema de Pitàgores Donat un triangle rectangle amb catets a i b i hipotenusa h (el costat oposat a l'angle recte). Aleshores, Recordem que: el triangle és rectangle perquè té un angle recte, és a dir, un angle de 90 graus ó π / 2 radiants. la hipotenusa és el costat oposat a l'angle recte Problemes d'aplicació Problema 1 Calcular la hipotenusa del triangle rectangle de costats 3cm i 4cm. Solució: Els costats só...
Àrea de coneixementContext educatiu- Educación Secundaria Obligatoria
- 12 - 13 años / Primer curso
- 13 - 14 años / Segundo curso
- 14 - 15 años / Tercer curso
- 15 - 16 / Cuarto curso
- Formación Profesional
- Formación Profesional Básica (más de 15 años)
- Ciclo formativo grado medio (más de 16 años)
- Ciclo formativo grado superior (más de 18 años)
- Educación de Personas Adultas